Analog Electronics ENEE236

Instructor: Nasser Ismail

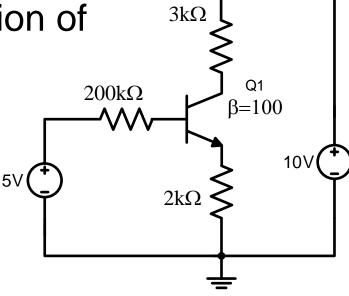
L8- DC Biasing - BJTs

Example

Assume Vce(sat)=0.2 V

Find mode of operation of

Q1?



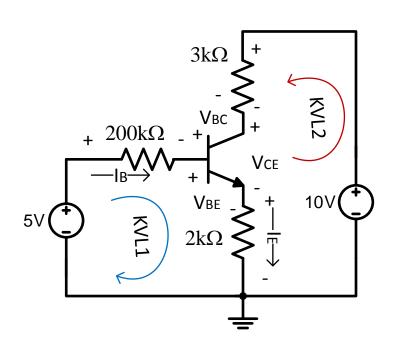
Determine Mode of Operation of BJT?

- Solution:
- 1) Since BE junction is forward biased ==> Q1 can be either in Active (Linear) or Saturation mode
- Assume it is in Active Mode

$$5 = 200 \text{ k}\Omega \cdot I_{\text{B}} + V_{\text{BE}} + 2 \text{ k}\Omega \cdot I_{\text{E}}$$
But,
$$I_{\text{E}} = (1 + \beta)I_{\text{B}}$$

Solve for
$$I_B = \frac{5 - V_{BE}}{200 \text{ k}\Omega + (1 + \beta).2 \text{ k}\Omega}$$

$$I_{B} = \frac{5 - 0.7}{200 \text{ k}\Omega + (1 + 100). 2 \text{ k}\Omega}$$
$$= \frac{4.3 \text{ V}}{402 \text{ k}\Omega} = 10.7 \text{ } \mu\text{A}$$

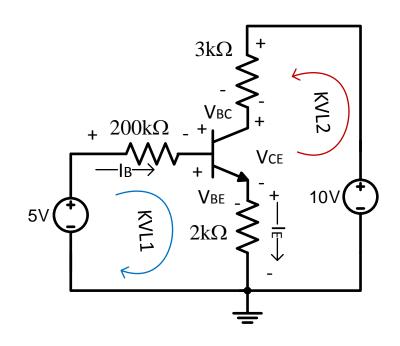


$$I_{C} = \beta I_{B}$$

= (100).(10.7 μ A)
= 1.07 mA
 $I_{E} = (\beta + 1)I_{B}$
= 1.0807 mA

Now we find V_{CE} from output circuit

10 -
$$I_C$$
 .3 k Ω - I_E .2 k Ω = V_{CE}
 $\Rightarrow V_{CE} = 4.63 \text{ V} > V_{CE(sat)}$



∴ Q1 is in active mode and the assumption is true we can also verify that the BC junction is reverse biassed which is required so that the BJT operates in active mode

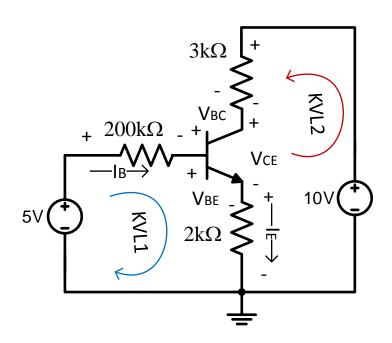
$$10 - I_C .3 k\Omega - I_E .2 k\Omega = V_{CE}$$

$$\Rightarrow$$
 $V_{CE} = V_{CB} - V_{EB}$

$$\Rightarrow$$
 V_{CB} = V_{CE} - V_{BE} = 4.63 - 0.7 = 3.93 V

$$\therefore V_{BC} = -V_{CB} = -3.33 \text{ V}$$

BC junction is reverse biased



- Solution:
- 1) Since BE junction is forward biased ==> Q1 can be either in Active (Linear) or Saturation mode
- Assume it is in saturation mode:

$$\begin{aligned} &10 - I_{\text{C(sat)}}.3k\Omega - I_{\text{E(sat)}}.2k\Omega = V_{\text{CE(Sat)}} \\ &\text{assume} \quad I_{\text{E(sat)}} = I_{\text{C(sat)}} \\ &\therefore I_{\text{C(sat)}} = \frac{10 - 0.2}{5k\Omega} = 1.96 \text{ mA} \end{aligned}$$

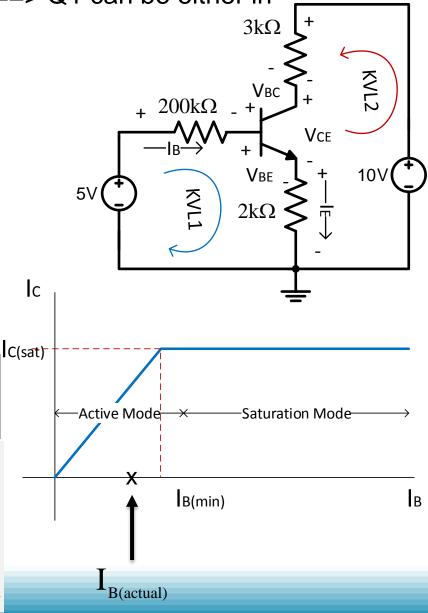
$$I_{B(min)} = \frac{I_{C(sat)}}{\beta} = 19.6 \ \mu A$$

Now we find the actual value of IB

$$I_{B(actual)} = 10.7 \,\mu\text{A}$$
 (it was found previously)

since

 $I_{\text{B(actual)}} < I_{\text{B(sat)}} = I_{\text{B(min)}} \implies$ the assumption made earlier that BJT in saturation mode is wrong, and actually it is in active mode

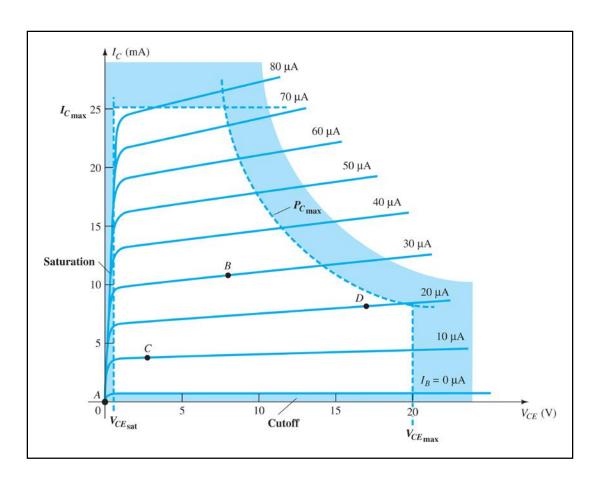


Biasing

Biasing: Applying DC voltages to a transistor in order to establish fixed level of voltage and current. For Amplifier (active/Linear) mode, the resulting dc voltage and current establish the operation point to turn it on so that it can amplify AC signals.

Operating Point

The DC input establishes an operating or quiescent point called the **Q-point**.



The Three Operating Regions

Active or Linear Region Operation

- Base–Emitter junction is forward biased
- Base–Collector junction is reverse biased

Cutoff Region Operation

Base–Emitter junction is reverse biased

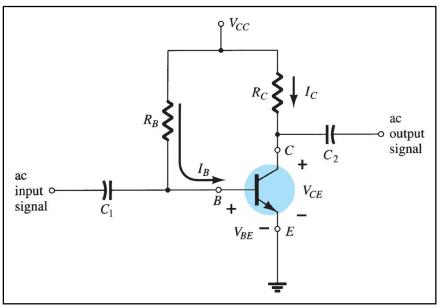
Saturation Region Operation

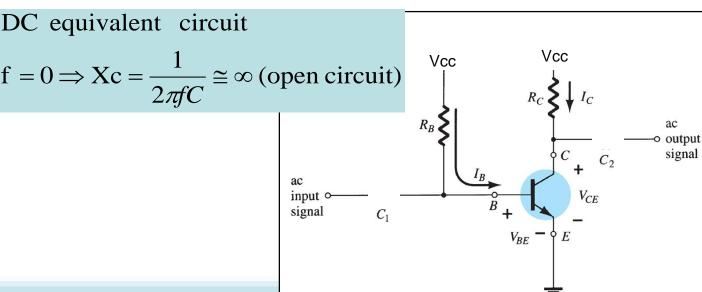
- Base–Emitter junction is forward biased
- Base–Collector junction is forward biased

DC Biasing Circuits

- 1. Fixed-bias circuit
- 2. Emitter-stabilized bias circuit
- 3. DC bias with voltage feedback
- 4. Voltage divider bias circuit

1) Fixed Bias Configuration





The Base-Emitter Loop

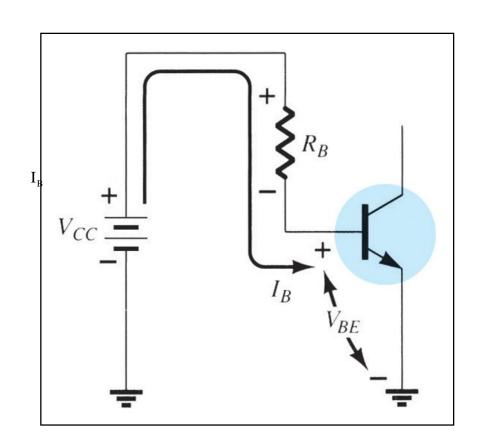
From Kirchhoff's voltage law for Input:

$$+ V_{CC} - I_B R_B - V_{BE} = 0$$

Solving for base current:

$$I_{B} = \frac{V_{CC} - V_{BE}}{R_{B}}$$

Choosing RB will establish the required level of IB



Collector-Emitter Loop

Collector current:

$$I_C = \beta I_B$$

From Kirchhoff's voltage law:

$$V_{CE} = V_{CC} - I_{C}R_{C}$$

$$V_{CE} = V_C - V_E$$

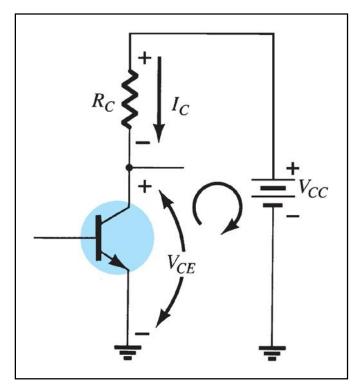
Since
$$V_E = 0$$
 $\Longrightarrow :: V_{CE} = V_C$

$$V_{CE} = V_{CC} - I_{C}R_{C}$$

Also

$$V_{BE} = V_{B} - V_{E}$$

$$\therefore V_{BE} = V_{B}$$



$$V_{BE} - V_{CE} - V_{BC} = 0$$

$$V_{BC} - V_{CE} - V_{CE} - V_{CE}$$

$$V_{BC} - V_{CE} - V_{CE} - V_{CE}$$

Saturation

When the transistor is operating in **saturation**, current through the transistor is at its *maximum* possible value.

$$I_{Csat} = \frac{V_{CC}}{R_{C}}$$

$$V_{CE} = V_{CE(sat)} \cong 0 \ V$$

Load Line Analysis

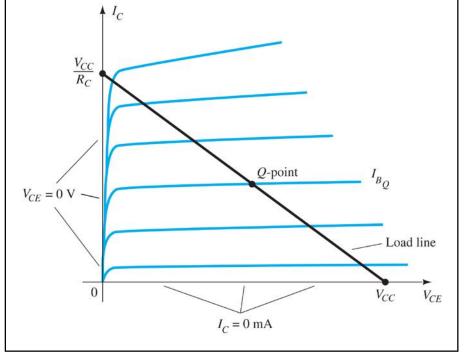
The load line end points are:

Csat

$$I_C = V_{CC}/R_C$$
$$V_{CE} = 0 \text{ V}$$

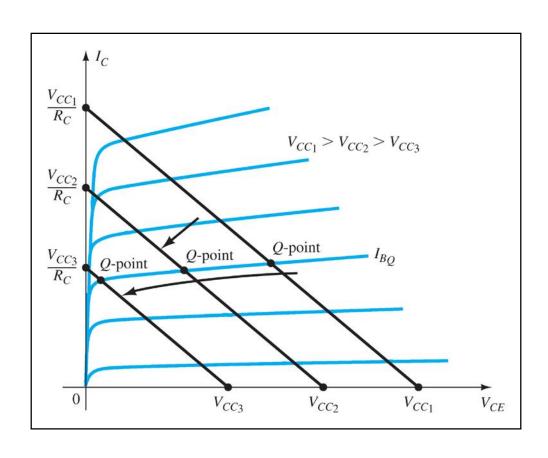
V_{CEcutoff}

$$V_{CE} = V_{CC}$$
 $I_C = 0 \text{ mA}$

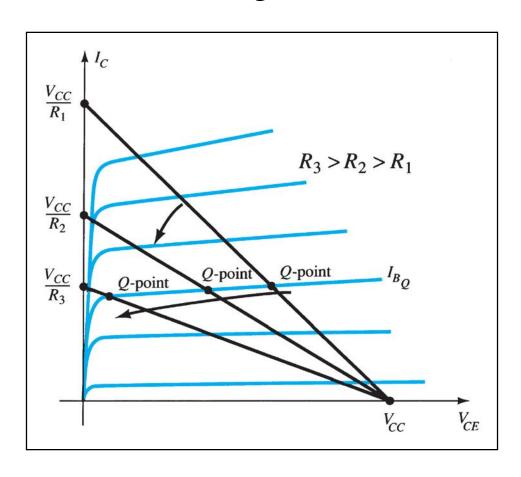


The Q-point is the operating point where the value of R_B sets the value of I_B that controls the values of V_{CE} and I_C

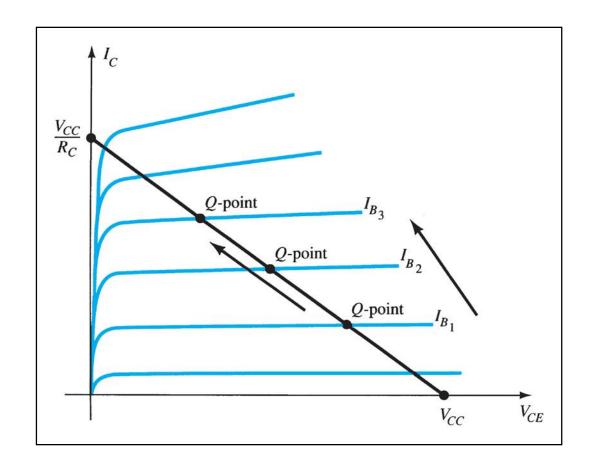
The Effect of V_{cc} on the Q-Point



The Effect of R_c on the Q-Point



The Effect of I_B on the Q-Point



Design: Fixed bias

Assume VCC = 10V, $\beta_{\text{nominal}} = 100$, $\beta_{\text{min}} = 50$, $\beta_{\text{max}} = 150$

Design for Q - point : $V_{CEQ} = 5V$, $I_{CQ} = 1mA$

Solution

$$I_{BQ} = \frac{I_{CQ}}{\beta_{\text{nominal}}} = \frac{1 \text{ mA}}{100} = 10 \text{ }\mu\text{A}$$

$$I_{B} = \frac{V_{CC} - V_{BE}}{R_{B}} \Longrightarrow$$

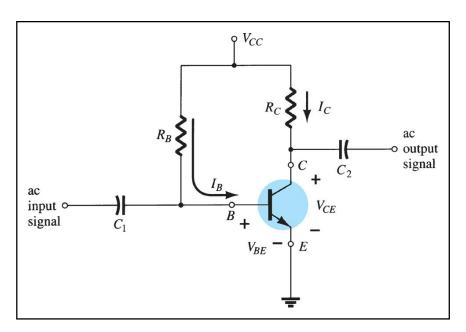
$$R_{B} = \frac{V_{CC} - V_{BE}}{I_{B}} = \frac{10 - 0.7}{10 \,\mu\text{A}}$$

$$=930 k\Omega$$

$$V_{CE} = V_{CC} - I_{C}R_{C}$$

$$V_{CEQ} = 5 = 10 - I_{C}R_{C}$$

$$\therefore R_C = \frac{5}{1 \text{ mA}} = 5 \text{ k}\Omega$$



Fixed bias Stability

Assume VCC = 10V, $\beta_{\text{nominal}} = 100$, $\beta_{\text{min}} = 50$, $\beta_{\text{max}} = 100$

Design for Q - point : $V_{CEO} = 5V$, $I_{CO} = 1mA$

Solution – continued

If
$$\beta = \beta_{min} = 50$$

$$I_{\rm B} = 10 \, \mu A$$

$$I_C = \beta I_B = (50)(10 \,\mu\text{A}) = 0.5 \,\text{mA}$$

$$V_{CE} = V_{CC} - I_{C}R_{C}$$

$$V_{CEO} = 10 - (0.5 \text{ mA})(5 \text{ k}\Omega) = 7.5 \text{ V}$$

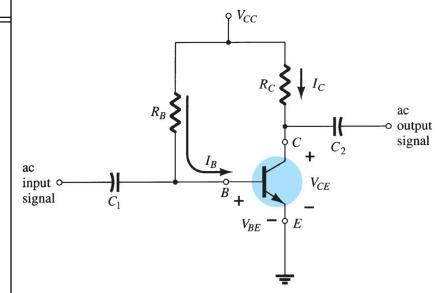
If
$$\beta = \beta_{max} = 150$$

$$I_{\rm R} = 10 \, \mu A$$

$$I_C = \beta I_B = (150)(10 \,\mu\text{A}) = 1.5 \,\text{mA}$$

$$V_{CE} = V_{CC} - I_{C}R_{C}$$

$$V_{CEQ} = 10 - (1.5 \text{ mA})(5 \text{ k}\Omega) = 2.5 \text{ V}$$



for

$$50 \le \beta \le 150$$

$$I_{\rm B} = 10 \,\mu A$$
 fixed

$$0.5 \,\mathrm{mA} \leq \,\mathrm{I}_{\mathrm{C}} \leq 1.5 \,\mathrm{mA}$$

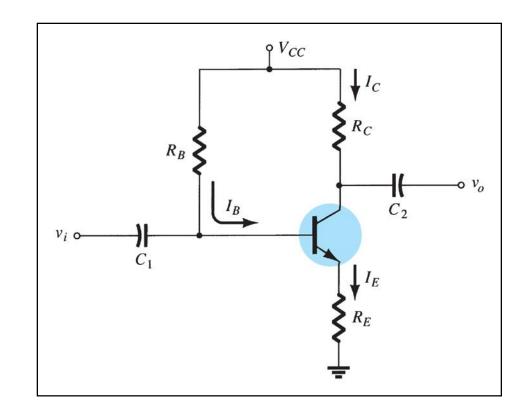
$$7.5 \text{ V} \ge \text{ V}_{CE} \ge 2.5 \text{ V}$$

$$\therefore \frac{I_{C(max)}}{I_{C(max)}} = \frac{1.5 \text{ mA}}{0.5 \text{ mA}} = 3$$

Not very stable

2) Emitter-Stabilized Bias Circuit

Adding a resistor (R_E) to the emitter circuit stabilizes the bias circuit.



Base-Emitter Loop

From Kirchhoff's voltage law:

$$+V_{CC}-I_BR_B-V_{BE}-I_ER_E = 0$$

Since
$$I_E = (\beta + 1)I_B$$
:

$$V_{CC} - I_B R_B - V_{BE} - (\beta + 1) I_B R_E = 0$$

Solving for I_B:

$$I_B = \frac{V_{CC} - V_{BE}}{R_B + (\beta + 1)R_E}$$

 $(\beta + 1)R_E \leftarrow$ is the emitter resistor as it appears in the base emitter loop

Base-Emitter Loop

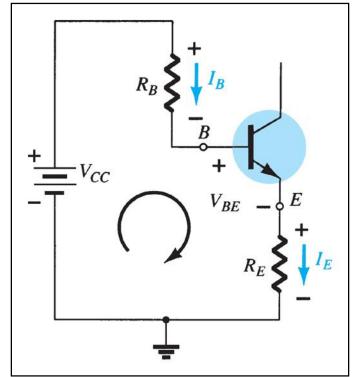
Solving for I_E:

$$I_E = \frac{V_{CC} - V_{BE}}{\frac{R_B}{(\beta + 1)} + R_E}$$

In order to get IE almost independant of B we choose:

$$R_E >> \frac{R_B}{(\beta + 1)}$$

$$\Rightarrow I_E \cong \frac{V_{CC} - V_{BE}}{R_E}$$



Also, in order to guarantee operation in linear mode

we choose
$$0.1 V_{CC} \le V_{E} < 0.2 V_{CC}$$

Collector-Emitter Loop

From Kirchhoff's voltage law:

$$I_E R_E + V_{CE} + I_C R_C - V_{CC} = 0$$

Since $I_E \cong I_C$:

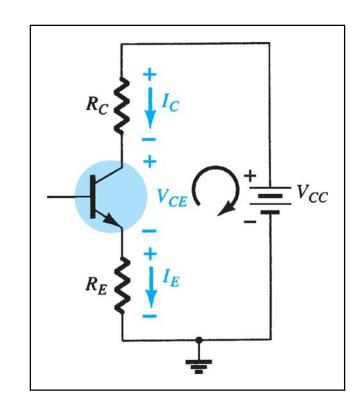
$$V_{CE} = V_{CC} - I_C(R_C + R_E)$$

Also:

$$V_E = I_E R_E$$

$$V_C = V_{CE} + V_E = V_{CC} - I_C R_C$$

$$V_B = V_{CC} - I_R R_B = V_{BE} + V_E$$



Design: Emitter Stabilization bias

Assume VCC = 10V, $\beta_{\text{nominal}} = 100$, $\beta_{\text{min}} = 50$, $\beta_{\text{max}} = 150$

Design for Q - point : $V_{CEQ} = 5V$, $I_{CQ} = 1mA$

Solution

$$-let V_E = 0.1 V_{CC}$$

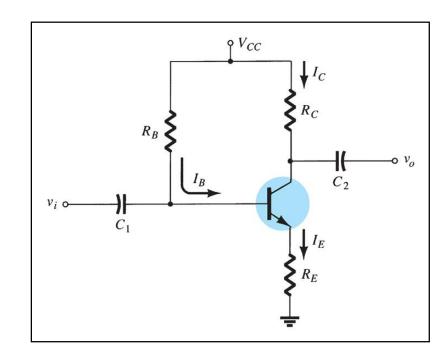
$$V_E = 1V$$

$$I_E = \frac{V_E}{R_E} \Longrightarrow R_E = \frac{1 \text{ V}}{1.01 \text{ mA}} \cong 1 \text{ k}\Omega$$

$$I_B = \frac{V_{CC} - V_{BE}}{R_- + (\beta + 1)R_-} \Longrightarrow$$

$$R_{\scriptscriptstyle B}I_{\scriptscriptstyle B} + I_{\scriptscriptstyle B}(\beta+1)R_{\scriptscriptstyle E} = V_{\scriptscriptstyle CC} - V_{\scriptscriptstyle BE}$$

$$R_{B} = \frac{V_{CC} - V_{BE} - I_{B}(\beta + 1)R_{E}}{I_{B}}$$
$$= \frac{10 - 0.7 - 10 \,\mu A(100 + 1)1 \,k\Omega}{10 \,\mu A}$$



$$V_{CE} = V_{CC} - I_{C}R_{C} - V_{E}$$

$$V_{CEQ} = 5 = 10 - 1 - I_{C}R_{C}$$

$$\therefore R_{\rm C} = \frac{4}{1 \, \text{mA}} = 4 \, \text{k}\Omega$$

 $= 829 \text{ k}\Omega$

Emitter bias Stability

If
$$\beta = \beta_{min} = 50$$

$$I_{B} = \frac{9.3}{829k\Omega + 51k\Omega} = 10.56 \,\mu\text{A}$$

$$I_{C} = \beta I_{B} = (50)(10.56 \,\mu\text{A}) = 0.528 \,\text{mA}$$

$$V_{CE} = V_{CC} - I_{C}R_{C} - V_{E}$$

$$V_{CEQ} = 10 - (0.528 \text{ mA})(4 \text{ k}\Omega) - 1 = 6.89 \text{ V}$$

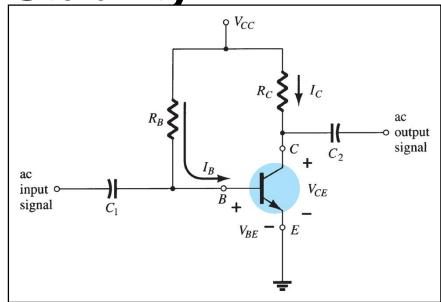
If
$$\beta = \beta_{max} = 150$$

$$I_{\rm B} = \frac{9.3}{829k\Omega + 151k\Omega} = 9.489 \,\mu{\rm A}$$

$$I_C = \beta I_B = (150)(9.489 \,\mu\text{A}) = 1.423 \,\text{mA}$$

$$V_{CE} = V_{CC} - I_C R_C - V_E$$

$$V_{CEQ} = 10 - (1.423 \text{ mA})(4 \text{ k}\Omega) - 1 = 3.31 \text{ V}$$



for

$$50 \le \beta \le 150$$

$$10.56 \,\mu\text{A} \ge I_{\text{B}} \ge 9.489 \,\mu\text{A}$$

$$0.528 \,\mathrm{mA} \le I_{\rm C} \le 1.423 \,\mathrm{mA}$$

$$6.89 \text{ V} \ge \text{ V}_{CE} \ge 3.31 \text{ V}$$

$$\therefore \frac{I_{C(max)}}{I_{C(min)}} = \frac{1.423 \text{ mA}}{0.528 \text{ mA}} \cong 2.7$$

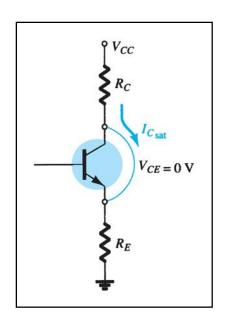
Improved, but not very stable

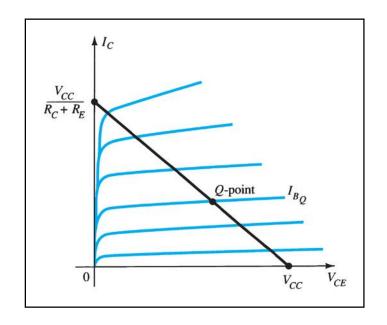
Improved Biased Stability

Stability refers to a condition in which the currents and voltages remain fairly constant over a wide range of temperatures and transistor Beta (β) values.

Adding R_E to the emitter improves the stability of a transistor.

Saturation Level





The endpoints can be determined from the load line.

$$V_{CE} = V_{CC}$$
 $I_C = 0 \text{ mA}$

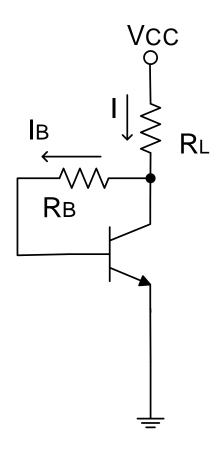
$$V_{CE} = 0 \text{ V}$$

$$I_C = \frac{V_{CC}}{R_C + R_E}$$

3) DC Bias With Voltage Feedback

Another way to improve the stability of a bias circuit is to add a feedback path from collector to base.

In this bias circuit the Q-point is only slightly dependent on the transistor beta, β .



Base-Emitter Loop

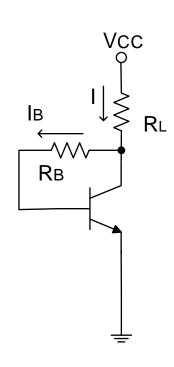
From Kirchhoff's voltage law:

$$\begin{split} &V_{CC}-I.R_L-I_BR_B-V_{BE}=0\\ &I=I_C+I_B\\ &I_C=\beta I_B \end{split}$$

Solving for I_B :

$$I_{B} = \frac{V_{CC} - V_{BE}}{R_{L}(\beta + 1) + R_{B}}$$

$$\begin{split} &V_{\text{CC}} = I.R_{\text{L}} + V_{\text{CE}} \\ &I = I_{\text{C}} + I_{\text{B}} \\ &V_{\text{CE}} = V_{\text{CC}} - \left(I_{\text{C}} + I_{\text{B}}\right) R_{\text{L}} \end{split}$$



suppose
$$\beta \uparrow$$
, $I_B \downarrow$, $I_C = \uparrow \beta . I_B \downarrow \cong const$
there is some kind of compensation effect

Design: Voltage feedback bias

Assume VCC = 10V,
$$\beta_{\text{nominal}} = 100$$
, $\beta_{\text{min}} = 50$, $\beta_{\text{max}} = 150$

Design for Q - point : $V_{CEO} = 5V$, $I_{CO} = 1mA$

 $=4.95 \mathrm{k}\Omega$

Solution

$$R_{L} = \frac{V_{CC} - V_{CE}}{I_{C} + I_{B}} = \frac{10 - 5}{1mA + \frac{1mA}{100}}$$

$$I_{B} = \frac{V_{CC} - V_{BE}}{R_{L}(\beta + 1) + R_{B}}$$

$$\therefore R_{\rm B} = 430 \,\mathrm{k}\Omega$$

If
$$\beta = \beta_{min} = 50$$

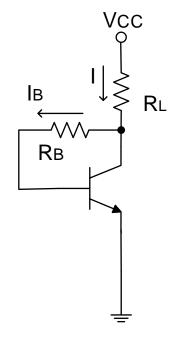
$$I_{\rm B} = 0.013627 \, \text{mA}$$

$$I_{\rm C} = 0.68 \, \text{mA}$$

If
$$\beta = \beta_{max} = 150$$

$$I_B = 0.00793 \,\text{mA}$$

$$I_{\rm C} = 1.19 \, \rm mA$$



for

$$50 \le \beta \le 150$$

$$0.68 \, \text{mA} \le I_{\text{C}} \le 1.19 \, \text{mA}$$

$$\therefore \frac{I_{C(max)}}{I_{C(min)}} = \frac{1.19 \text{ mA}}{0.68 \text{ mA}} \cong 1.75$$

Better Q-point stability

Base-Emitter Bias Analysis

Transistor Saturation Level

$$I_{Csat} = I_{Cmax} = \frac{V_{CC}}{R_{L}}$$

Load Line Analysis Cutoff

$$V_{CE} = V_{CC}$$
 $I_C = 0 \, mA$

Saturation

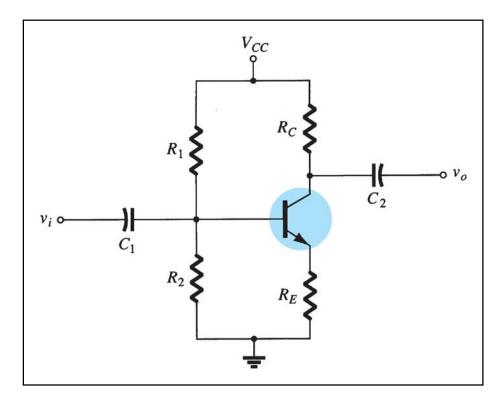
$$I_{C} = \frac{V_{CC}}{R_{L}}$$

$$V_{CE} = 0 \text{ V}$$

4) Voltage Divider Bias

This is a very stable bias circuit.

The currents and voltages are nearly independent of any variations in β if the circuit is designed properly



Approximate Analysis

Where $I_B \ll I_1$ and $I_1 \cong I_2$:

$$V_{B} = \frac{R_1 V_{CC}}{R_1 + R_2}$$

$$V_{E} = V_{B} - V_{BE}$$

$$I_{\text{E(approximate)}} = \frac{V_{E}}{R_{E}} = \frac{V_{B} - V_{BE}}{R_{E}}$$

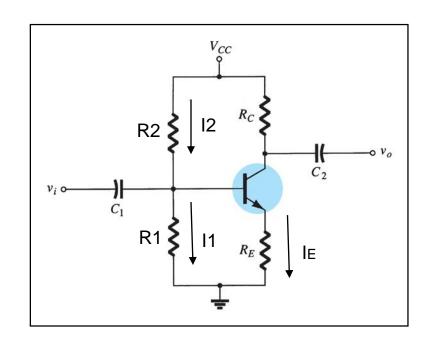
From Kirchhoff's voltage law:

$$V_{CE} = V_{CC} - I_C R_C - I_E R_E$$

$$I_E \cong I_C$$

$$V_{CE} = V_{CC} - I_C (R_C + R_E)$$

Here we got Ic independent of β which provides good Q-point stability



Exact Analysis

We must try to make I_B as close as possible to zero

Thevenin Equivalent circuit for the circuit left of the base is done R₁V_{CC}

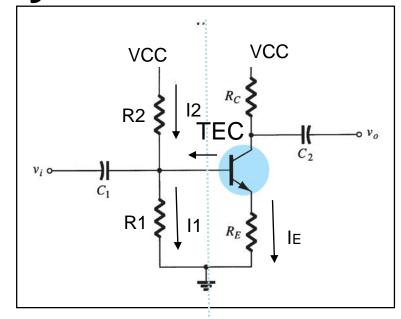
$$V_{th} = \frac{R_1 V_{CC}}{R_1 + R_2}$$

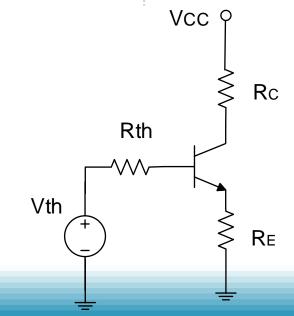
$$R_{th} = R_1 // R_2 = \frac{R_1 R_2}{R_1 + R_2}$$

$$\boldsymbol{V}_{th} = \boldsymbol{I}_{B}\boldsymbol{R}_{th} + \boldsymbol{V}_{BE} + \boldsymbol{I}_{E}\boldsymbol{R}_{E}$$

but
$$I_B = \frac{I_E}{\beta + 1}$$

$$\therefore I_{E(exact)} = \frac{V_{th} - V_{BE}}{\frac{Rth}{\beta + 1} + R_{E}}$$





Exact Analysis

$$\therefore I_{E(exact)} = \frac{V_{th} - V_{BE}}{\frac{Rth}{\beta + 1} + R_{E}}$$

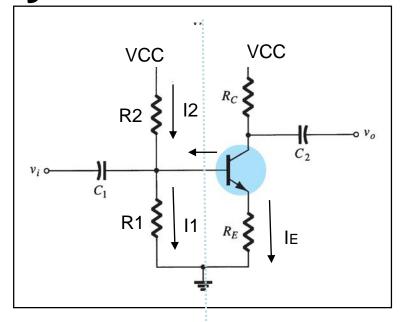
if we compare to approximate solution

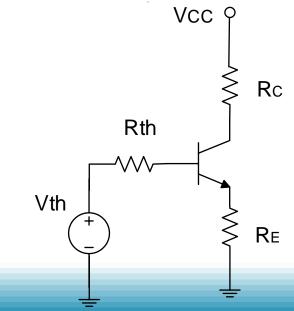
$$I_{\text{E(approximate)}} = \frac{V_{\text{B}} - V_{\text{BE}}}{R_{\text{E}}}$$

 \Rightarrow we must make the quantity $\frac{\text{Rth}}{\beta + 1} \ll R_E$

Here we got Ic independent of β

$$\therefore \text{ Rth} << (\beta+1)R_E$$
as a rule let Rth $<< \frac{(\beta+1)R_E}{10}$
or
$$\beta R_E$$





Design: Voltage Divider bias

Assume VCC = 10V, $\beta_{\text{nominal}} = 100$, $\beta_{\text{min}} = 50$, $\beta_{\text{max}} = 150$

Design for Q - point : $V_{CEQ} = 5V$, $I_{CQ} = 1mA$

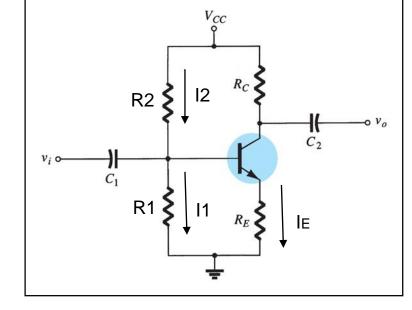
Solution

1) let
$$V_E = 0.1 V_{CC}$$

$$V_E = 1V$$

$$I_E = \frac{V_E}{R_E} \Longrightarrow R_E = \frac{1 \text{ V}}{1.01 \text{ mA}} \cong 1 \text{ k}\Omega$$

2) let Rth =
$$\frac{R_E.\beta_{\text{nominal}}}{50} = \frac{1 \text{ k}\Omega.100}{50} = 2 \text{ k}\Omega$$



3)
$$V_{CC} = R_C I_C + I_E R_E + V_{CE}$$

 $V_{CEO} = 5$

$$\therefore R_{C} = \frac{V_{CC} - V_{CE} - V_{E}}{1mA} = \frac{10 - 5 - 1}{1mA} = 4 k\Omega$$

Design: Voltage Divider bias

Assume VCC = 10V,
$$\beta_{\text{nominal}} = 100$$
, $\beta_{\text{min}} = 50$, $\beta_{\text{max}} = 150$

Design for Q - point : $V_{CEO} = 5V$, $I_{CO} = 1mA$

Solution – continued

$$4)I_{E} = \frac{V_{th} - V_{BE}}{\frac{Rth}{\beta + 1} + R_{E}}$$

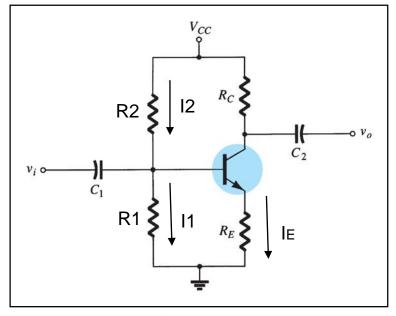
$$\therefore V_{th} = \frac{R_1 V_{CC}}{R_1 + R_2} = I_E \left(\frac{Rth}{\beta + 1} + R_E \right) + V_{BE} = 1.72 V \dots (1)$$

$$R_{th} = R_1 // R_2 = \frac{R_1 R_2}{R_1 + R_2} = 2 k\Omega$$

solving (1) & (2) yields:

$$R_1 = 2.42 \text{ k}\Omega$$

$$R_2 = 11.64 \text{ k}\Omega$$



Voltage Divider bias Stability

If
$$\beta = \beta_{min} = 50$$

$$I_{\rm C} = 0.982 \, \text{mA}$$

If
$$\beta = \beta_{\text{max}} = 150$$

$$I_{\rm C} = 1.0069 \, \text{mA}$$

for

$$50 \le \beta \le 150$$

$$0.982 \,\mathrm{mA} \le \,\mathrm{I_C} \le 1.0067 \,\mathrm{mA}$$

$$\therefore \frac{I_{C(max)}}{I_{C(min)}} = \frac{1.0067 \text{ mA}}{0.982 \text{ mA}} \cong 1.0254$$

Very good Q-point stability

Voltage Divider Bias Analysis

Transistor Saturation Level

$$I_{Csat} = I_{Cmax} = \frac{V_{CC}}{R_C + R_E}$$

Load Line Analysis

Cutoff:

$$V_{CE} = V_{CC}$$
 $I_C = 0 \text{ mA}$

Saturation:

$$I_C = \frac{V_{CC}}{R_C + R_E}$$
$$V_{CE} = 0 \text{ V}$$

PNP Transistors

The analysis for *pnp* transistor biasing circuits is the same as that for *npn* transistor circuits. The only difference is that the currents are flowing in the opposite direction.

DC and AC Load Lines

Assume VCC = 18V, β = 100

$$R_{\rm B} = 576 \, k\Omega; R_{\rm C} = 3k\Omega; V_{\rm BE} = 0.65 \, V$$

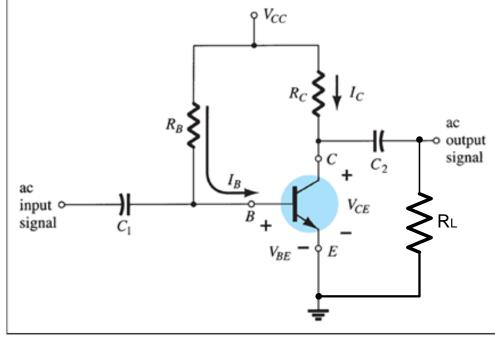
FIRST: DC ANALYSIS

$$V_{CC} = V_{CE} + I_{C}R_{C}$$

$$I_{C} = -\frac{1}{R_{C}}V_{CE} + \frac{V_{CC}}{R_{C}} \Leftarrow I_{C} = f(V_{CE})$$

This is a straight line equation

$$Y = mX + b$$



$$I_{B} = \frac{V_{CC} - V_{BE}}{R_{B}} = \frac{18 - 0.65}{576 \text{ k}\Omega} = 30 \,\mu\text{A}$$

$$I_{C} = \beta I_{B} = 3 \text{ mA}$$

$$V_{CE} = V_{CC} - I_{C}R_{C} = 18 - (3\text{mA})(3\text{k}\Omega)$$

$$= 9 \text{ V}$$

Csat

$$I_{Csat} = \frac{V_{CC}}{R_{C}}$$

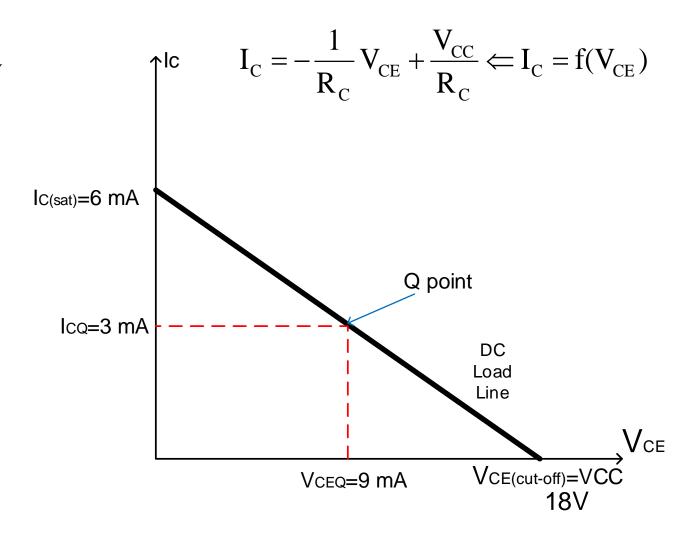
$$V_{CE} = V_{CE(sat)} \cong 0 \ V$$

V_{CEcutoff}

$$V_{CE(cutoff)} = V_{CC}$$

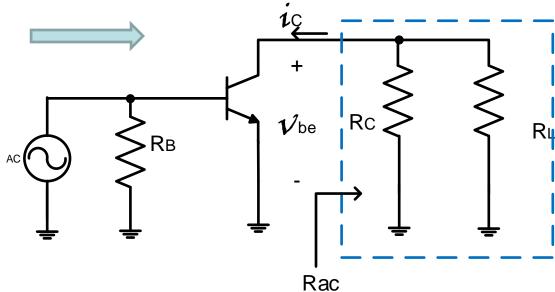
 $I_C = 0 \text{ mA}$

DC Load Line



AC Load Line

AC Equivalent Circuit



Since we have dc and ac quantities,

let us define the notation

total DC ac

$$V_{BE}(t) = V_{BE} + v_{be}$$

$$V_{CE}(t) = V_{CE} + v_{ce}$$

$$I_C(t) = I_C + i_C$$

$$I_{B}(t) = I_{B} + i_{b}$$

$$v_{ce} = -R_{ac}.i_c$$

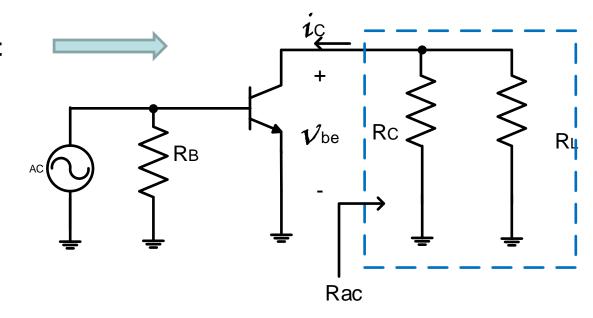
where
$$R_{ac} = R_c // R_L$$

is the ac resistance seen from collector terminal

+ resistance seen from emitter terminal

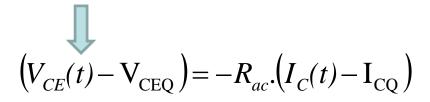
AC Load Line

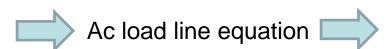
AC Equivalent Circuit



$$v_{ce} = V_{CE}(t) - V_{CE}$$
$$i_{c} = I_{C}(t) - I_{C}$$

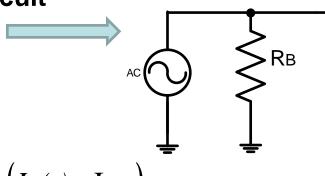
$$v_{ce} = -R_{ac}.i_c$$





To Draw ac load line we find $(V_{CE}(t)_{max})$ and $(I_{C}(t)_{max})$

AC Load Line



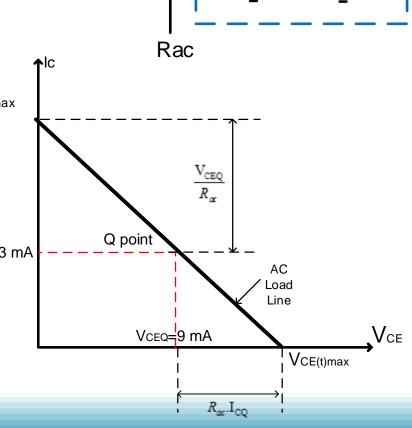
$$(V_{CE}(t) - V_{CEQ}) = -R_{ac} \cdot (I_C(t) - I_{CQ})$$

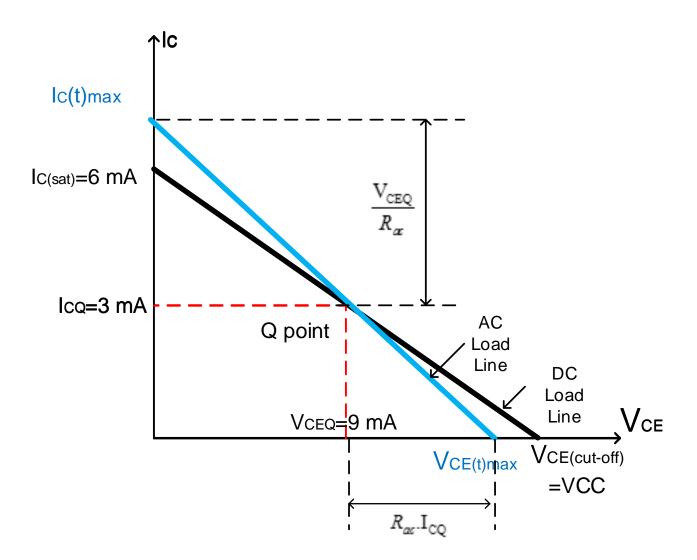
$$(V_{CE}(t)_{\text{max}} - V_{CEQ}) = R_{ac} \cdot I_{CQ}$$

$$V_{CE}(t)_{\text{max}} = V_{CEQ} + R_{ac} \cdot I_{CQ}$$
, when $I_{C}(t) = 0$

$$(V_{CE}(t) - V_{CEQ}) = -R_{ac} \cdot (I_C(t) - I_{CQ})$$

$$I_{C}(t)_{\text{max}} = \frac{V_{\text{CEQ}}}{R_{\text{ce}}} + I_{\text{CQ}} \text{ when } V_{\text{CE}}(t) = 0$$





Design

- In order to have the amplifier to amplify an input ac signal without distortion (by going into saturation or cut-off)
- We choose the Q-point in the middle of ac load line

$$I_{CQ} = \frac{1}{2} I_C(t)_{max}$$

$$V_{CEQ} = \frac{1}{2} V_{CE}(t)_{max}$$

$$2I_{CQ} = I_{C}(t)_{max}$$

$$2I_{CQ} = I_{CQ} + \frac{V_{CEQ}}{R_{ac}}$$

$$\therefore I_{CQ} = \frac{V_{CEQ}}{R}$$

DC Analysis

$$V_{CC} = V_{CE} + I_{C}R_{C}$$
define $R_{dc} = R_{C}$

$$V_{CC} = V_{CE} + I_{C}R_{dc}$$

at the Q - point

$$V_{\text{CC}} = V_{\text{CEQ}} + I_{\text{CQ}} R_{\text{dc}}$$

For maximum Symmetrical swing

$$\begin{split} \mathbf{I}_{\mathrm{CQ}} &= \frac{\mathbf{V}_{\mathrm{CEQ}}}{R_{ac}} \Rightarrow \mathbf{V}_{\mathrm{CEQ}} = \mathbf{I}_{\mathrm{CQ}} R_{ac} \\ \mathbf{V}_{\mathrm{CC}} &= \mathbf{I}_{\mathrm{CQ}}.\mathbf{R}_{ac} + \mathbf{I}_{\mathrm{CQ}}.\mathbf{R}_{\mathrm{dc}} \\ & \therefore \mathbf{I}_{\mathrm{CQ}} = \frac{V_{CC}}{\mathbf{R}_{ac} + \mathbf{R}_{dc}} \end{split} \qquad \text{To design for maximum Symmetrical Swing}$$

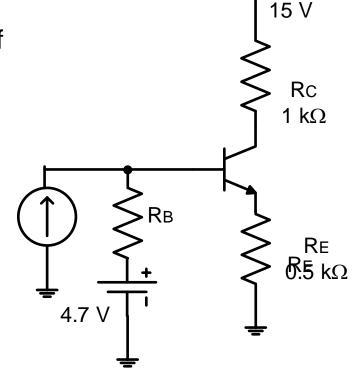
DC Analysis

Also

$$\begin{split} &V_{\text{CEQ}} = V_{\text{CC}} - I_{\text{CQ}} R_{\text{dc}} \\ &= V_{\text{CC}} - R_{\text{dc}} \frac{V_{\text{CC}}}{R_{\text{ac}} + R_{\text{dc}}} \\ &= V_{\text{CC}} \left(1 - \frac{R_{\text{dc}}}{R_{\text{ac}} + R_{\text{dc}}} \right) \\ &= V_{\text{CC}} \left(\frac{R_{\text{ac}} + R_{\text{dc}} - R_{\text{dc}}}{R_{\text{ac}} + R_{\text{dc}}} \right) \\ &= V_{\text{CC}} \left(\frac{R_{\text{ac}} + R_{\text{dc}} - R_{\text{dc}}}{R_{\text{ac}} + R_{\text{dc}}} \right) \\ &= V_{\text{CC}} \left(\frac{R_{\text{ac}}}{R_{\text{ac}} + R_{\text{dc}}} \right) = \left(\frac{V_{\text{CC}}}{1 + \frac{R_{\text{dc}}}{R}} \right)^{*****For maximum Symmetrical swing} \end{split}$$

Design Example

Design for maximum symmetrical swing of the collector current? Find the Q-point? Find the required Value of RB? Draw AC and DC load lines What is the power dissipation of the transistor at the Q-point?



Vcc

Solution

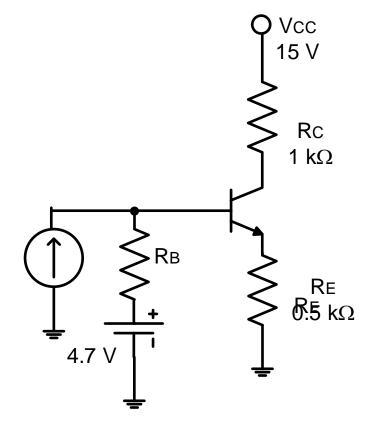
$$R_{ac} = R_{C} = 1 \text{ k}\Omega$$

$$R_{dc} = R_C + R_E = 1.5 \text{ k}\Omega$$

For Maximum Symmetrical Swing of Ic

$$I_{CQ} = \frac{V_{CC}}{R_{ac} + R_{dc}} = \frac{15}{1 \text{ k}\Omega + 1.5 \text{ k}\Omega} = 6 \text{ mA}$$

$$V_{CEQ} = \frac{V_{CC}}{1 + \frac{R_{dc}}{R_{gc}}} = \frac{15}{1 + \frac{1.5 \text{ k}\Omega}{1 \text{ k}\Omega}} = 6 \text{ V}$$



Maximum Swing (peak) of Ic

$$I_{\rm CM} = I_{\rm CQ} = 6 \, \text{mA}$$

Maximum Symmetrical Swing (peak - peak) of Ic

$$I_{Cp-p} = 2I_{CQ} = 12 \text{ mA}$$

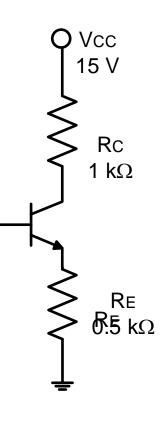
Solution

For Maximum Symmetrical Swing of Ic

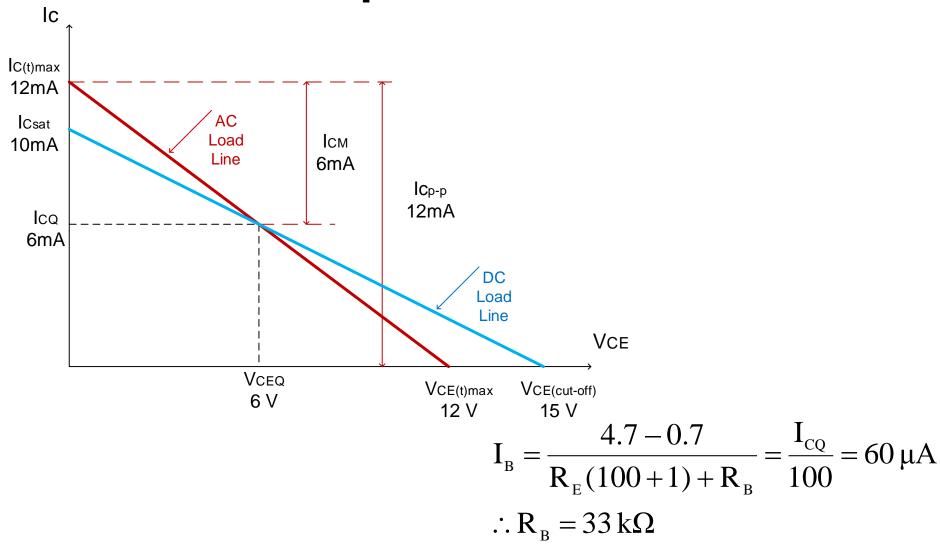
$$I_{C}(t)_{Max} = I_{CQ} + \frac{V_{CEQ}}{R_{ac}} = 6 \text{ mA} + \frac{6}{1 \text{ k}\Omega} = 12 \text{ mA}$$

For Maximum Symmetrical Swing of Ic

$$V_{CE}(t)_{Max} = I_{CQ}R_{ac} + V_{CEQ} = 6 \text{ mA.} 1 \text{ k}\Omega + 6 = 12 \text{ V}$$



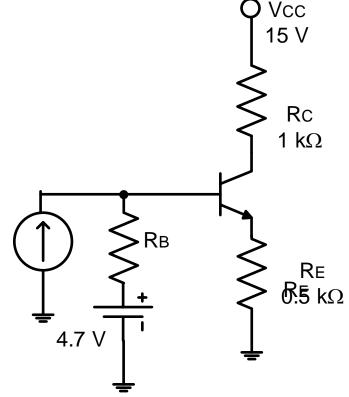
Example -Continued



$$P_0 = V_{CEO} I_{CO} = 6V. 6mA = 36 mW$$

Analysis Example

RB=50 $k\Omega$ Find the maximum collector current swing and the Q-point? Draw AC and DC load lines What is the power dissipation of the transistor at the Q-point?



$$R_{ac} = R_{C} = 1 k\Omega$$

$$R_{dc} = R_C + R_E = 1.5 \text{ k}\Omega$$

Solution

Value of Ic

$$I_{B} = \frac{4.7 - 0.7}{R_{E}(100 + 1) + R_{B}}$$

$$=\frac{4.7-0.7}{500(100+1)+50k\Omega}$$

$$=40 \,\mu\text{A}$$

$$I_{CO} = \beta I_{BO} = 4 \text{ mA}$$

$$V_{CEQ} = V_{CC} - I_{CQ} (R_C + R_E) = 9 V$$

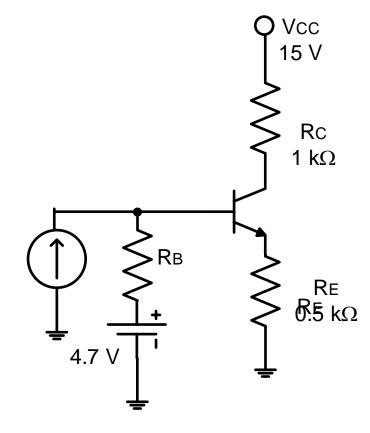
Maximum Swing (peak) of Ic

$$I_{CM} \neq I_{CO}$$

$$I_{CM} = 4 \text{ mA}$$

Maximum Symmetrical Swing (peak - peak) of Ic

$$I_{Cp-p} = 2I_{CM} = 8 \text{ mA}$$



Solution

$$I_{C}(t)_{Max} = I_{CQ} + \frac{V_{CEQ}}{R_{ac}} = 4 \text{ mA} + \frac{9}{1 \text{ k}\Omega} = 13 \text{ mA}$$

$$V_{CE}(t)_{Max} = I_{CQ}R_{ac} + V_{CEQ} = 4 \text{ mA}.1 \text{ k}\Omega + 9 = 13 \text{ V}$$

$$I_{C}(t)_{Max} = I_{CQ}R_{ac} + V_{CEQ} = 4 \text{ mA}.1 \text{ k}\Omega + 9 = 13 \text{ V}$$

$$I_{C(t)_{Max}} = I_{CQ}R_{ac} + V_{CEQ} = 4 \text{ mA}.1 \text{ k}\Omega + 9 = 13 \text{ V}$$

$$I_{C}(t)_{Max} = I_{CQ}R_{ac} + V_{CEQ} = 4 \text{ mA}.1 \text{ k}\Omega + 9 = 13 \text{ V}$$

$$I_{C}(t)_{Max} = I_{CQ}R_{ac} + V_{CEQ} = 4 \text{ mA}.1 \text{ k}\Omega + 9 = 13 \text{ V}$$

$$I_{C}(t)_{Max} = I_{CQ}R_{ac} + V_{CEQ} = 4 \text{ mA}.1 \text{ k}\Omega + 9 = 13 \text{ V}$$

$$I_{C}(t)_{Max} = I_{CQ}R_{ac} + V_{CEQ} = 4 \text{ mA}.1 \text{ k}\Omega + 9 = 13 \text{ V}$$

$$I_{C}(t)_{Max} = I_{CQ}R_{ac} + V_{CEQ} = 4 \text{ mA}.1 \text{ k}\Omega + 9 = 13 \text{ V}$$

$$I_{C}(t)_{Max} = I_{CQ}R_{ac} + V_{CEQ} = 4 \text{ mA}.1 \text{ k}\Omega + 9 = 13 \text{ V}$$

$$I_{C}(t)_{Max} = I_{CQ}R_{ac} + V_{CEQ} = 4 \text{ mA}.1 \text{ k}\Omega + 9 = 13 \text{ V}$$

$$I_{C}(t)_{Max} = I_{CQ}R_{ac} + V_{CEQ} = 4 \text{ mA}.1 \text{ k}\Omega + 9 = 13 \text{ V}$$

$$I_{C}(t)_{Max} = I_{CQ}R_{ac} + V_{CEQ} = 4 \text{ mA}.1 \text{ k}\Omega + 9 = 13 \text{ V}$$

$$I_{C}(t)_{Max} = I_{CQ}R_{ac} + V_{CEQ} = 4 \text{ mA}.1 \text{ k}\Omega + 9 = 13 \text{ V}$$

$$I_{C}(t)_{Max} = I_{CQ}R_{ac} + V_{CEQ} = 4 \text{ mA}.1 \text{ k}\Omega + 9 = 13 \text{ V}$$

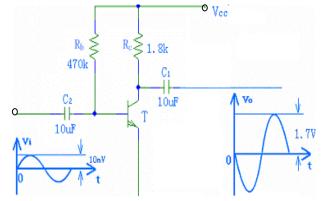
$$I_{C}(t)_{Max} = I_{CQ}R_{ac} + V_{CEQ} = 4 \text{ mA}.1 \text{ k}\Omega + 9 = 13 \text{ V}$$

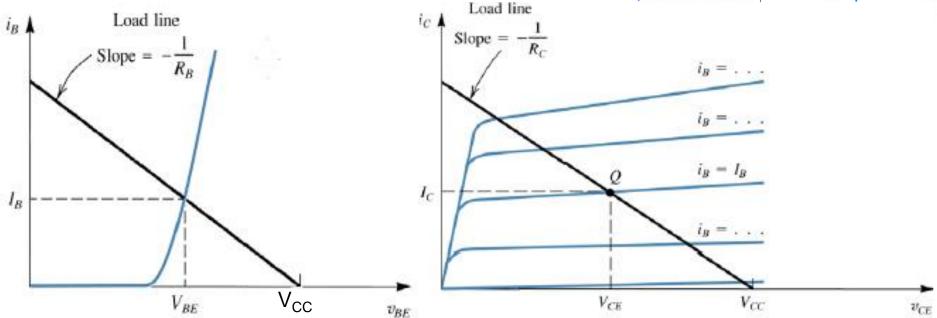
$$I_{C}(t)_{Max} = I_{CQ}R_{ac} + V_{CEQ}R_{ac} + V$$

Example -Continued

Graphical Analysis

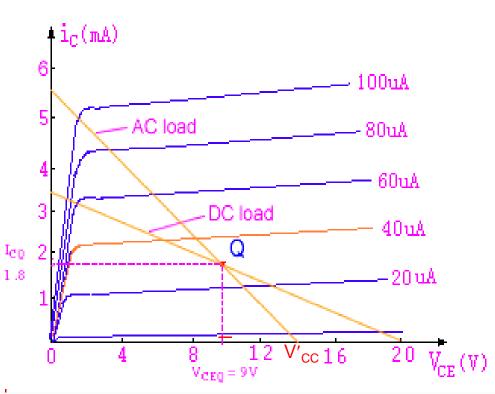
- Can be useful to understand the operation of BJT circuits.
- First, establish DC conditions by finding I_B (or V_{BE})
- Second, figure out the DC operating point for I_C

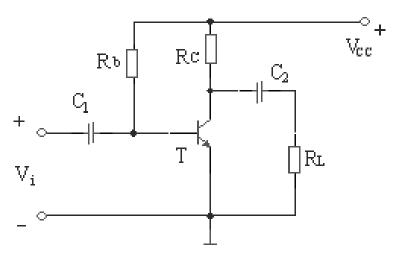




Can get a feel for whether the BJT will stay in active region of operation

– What happens if R_C is larger or smaller?



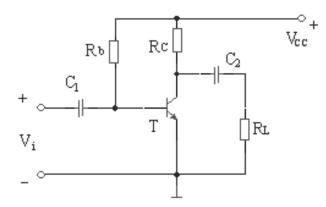


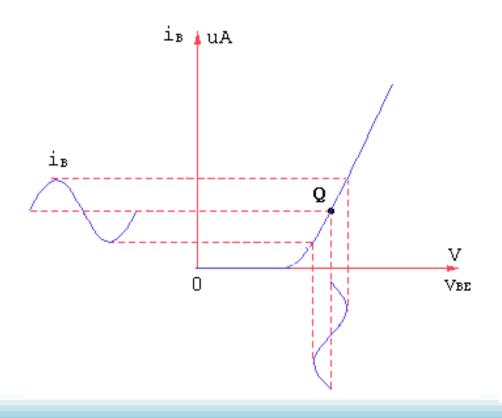
$$v_{ce} = -i_{c}(R_{C} /\!/ R_{L}) = -i_{c}R_{L}$$

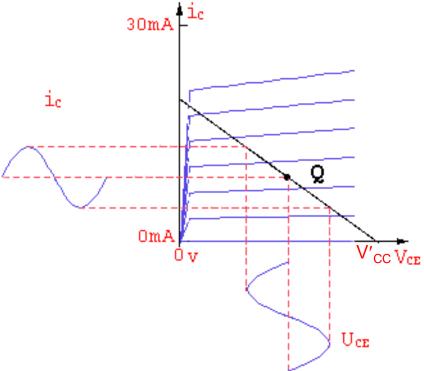
$$V_{CC}' = V_{CEQ} + I_{CQ}R_L'$$

Graphical Analysis

Q-point is centered on the ac load line:

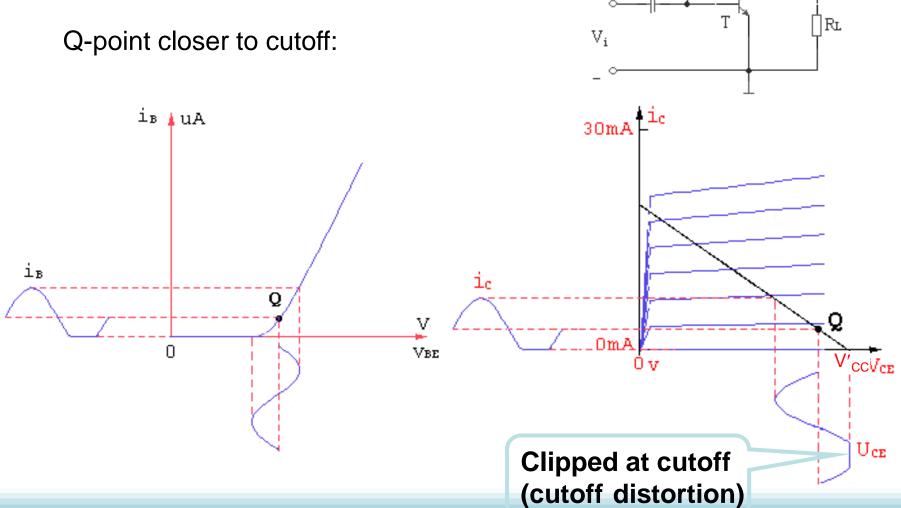






V_{cc}

R¢

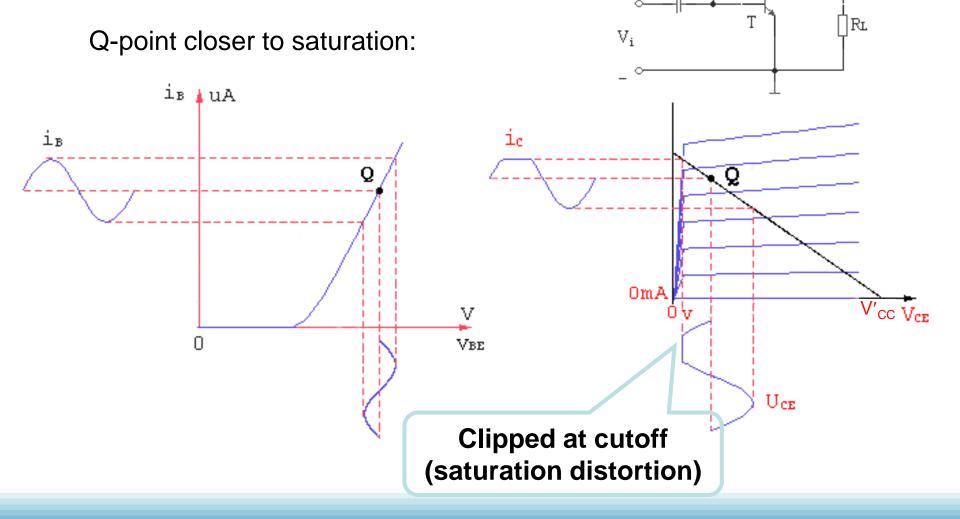


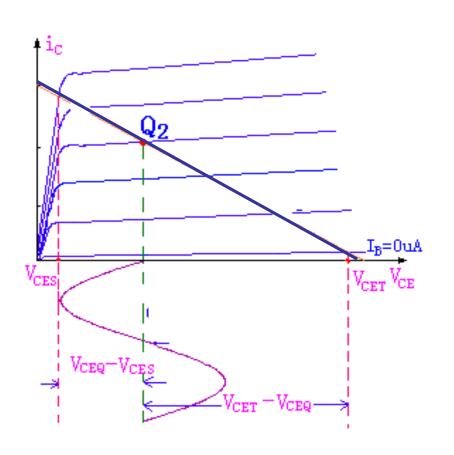
Vcc.

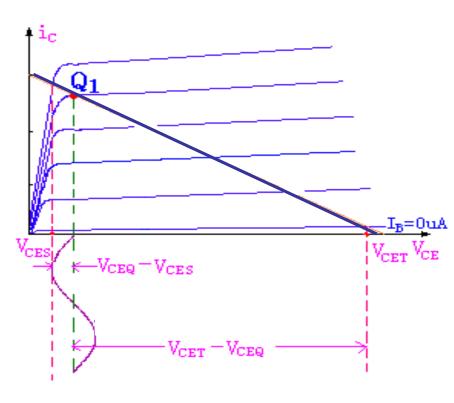
Rα

Rъ

6.2 Single-Stage BJT Amplifiers

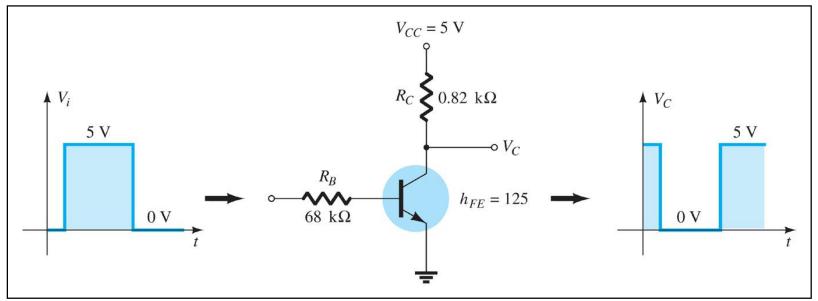






Transistor Switching Networks

Transistors with only the DC source applied can be used as electronic switches.



For
$$Vi = 5V$$

$$I_{\rm B} = \frac{5 - 0.7}{68k\Omega} = 63.24 \ \mu A$$

$$I_C = (125)(63.24 \,\mu\text{A}) = 7.9 \,\text{mA}$$

$$V_{CE} = V_{CC} - I_{C}R_{C}$$

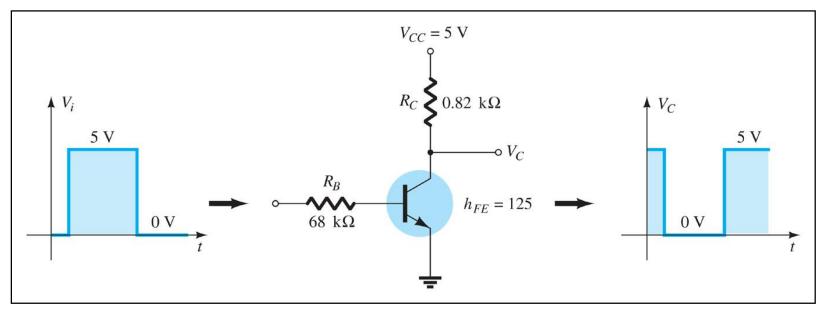
$$= 5 - (7.9 \text{ mA})(0.82 \text{k}\Omega)$$

$$= -1.482 \text{V} < V_{CE(\text{sat})}$$

 \therefore BJT is in Sat. Mode & Vc = V_{CE(sat)}

Transistor Switching Networks

Transistors with only the DC source applied can be used as electronic switches.

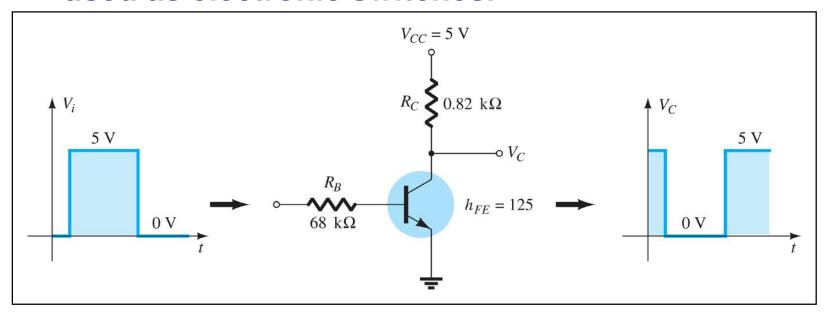


$$I_{C(sat)} = \frac{5}{0.82 \text{ k}\Omega} = 6.1 \text{ mA}$$

$$V_{O} = V_{CE(sat)} \cong 0.2 \text{ V}$$

Transistor Switching Networks

Transistors with only the DC source applied can be used as electronic switches.



For
$$Vi = 0V$$

$$I_B = 0$$

$$I_C = 0$$

$$V_{CE} = V_{CC}$$

:. BJT is in Cut - off Mode &
$$Vc = V_{CE(cut0ff)} = V_{CC} = 5V$$